50. hét
Hydrogen
mta | index | ME | NatGeo | mno
Környezet
Forma 1
StarCraft
Részecskegyorsító
Indul a legnagyobb részecskegyorsító - 9. rész: Fantasztikus elméletek
(2008.09.29.) A nagy hadronütköztető (LHC) minden eddiginél nagyobb energiájú protonnyalábjainak ütközéseiben nagyon sokféle részecske születik majd. Sorozatunk korábbi írásaiban a reálisan várható folyamatoktól haladtunk az egyre fantasztikusabb elképzelések felé. Ezúttal valóban fantasztikus dolgokat mutatunk be: az időutazást egy féreglyukban, a világegyenletet és az anyag új fajtáját, a nem-részecskét. Közös jellemzőjük, hogy a merész fantázia szülöttei, de eddig semmiféle tény nem igazolta őket. Az LHC-nál megnyílt új energiatartományban ez is változhat. Tovább >
Indul a legnagyobb részecskegyorsító - 8. rész: Biztonság égen és földön
(2008.09.15.) Sokan tartanak attól, hogy a nagy hadron ütköztető, az LHC minden eddiginél nagyobb energiájú laboratóriumi kísérleteiben olyan fizikai folyamatok indulhatnak be, olyan részecskék jelenhetnek meg, amelyek veszélyesek környezetükre, ránk. Egy másfajta, sokkal valósabb problémát jelenthetnek az LHC informatikai rendszerei elleni támadások - legutóbb az egyik legfontosabb detektor kapcsán próbálkozott egy görög hackercsoport, de csak az előszobáig jutott. Tovább >
Indul a legnagyobb részecskegyorsító - 7. rész: A Standard Modellen túl: észbontó sokdimenziós elméletek
(2008.09.08.) Sorozatunk legutóbbi írásában bemutattuk a részecskefizika eddigi kísérleti eredményeit jól leíró Standard Modellt. A modellnek már több kiterjesztését elkészítették, és részsikerek születtek az alapvető kölcsönhatások egységes elméletének kidolgozásában is. Sokak szerint azonban a Standard Modell nem lesz elég a természet leírásához, még akkor sem, ha megtalálják a kulcsfontosságú Higgs-bozont. A Standard Modellt meghaladó újabb elméletek eddig nem ismert részecskék sokaságának létezésével számolnak. Ezek a részecskék azonban túlságosan nagy tömegűek ahhoz, hogy az eddigi részecskegyorsítókban felbukkanhattak volna. A CERN új gyorsítója, a nagy hadron ütköztető (LHC) viszont minden korábbinál nagyobb energiák tartományát nyitja meg előttünk, ahol az új elméletek egyes következtetései ellenőrizhetővé válnak, és nem kizárt, hogy igazolást nyer majd valamelyik merész elgondolás. Ha nem, akkor tovább kell keresnünk a természetet jól leíró fizikát. Tovább >
Indul a legnagyobb részecskegyorsító - 6. rész: A modern fizika Szent Gráljának nyomában
részecskegyorsító (2008.08.24.) Az elmúlt évtizedekben végzett részecskefizikai kísérletek eredményeinek értelmezésére, egységes keretbe foglalására dolgozták ki a Standard Modellt. A modell jól leírja a ma ismert tényeket, és eddig a rá alapozott előrejelzések is beigazolódtak. Van azonban egy komoly hiányossága: még nem sikerült megtalálni az egyik alapvető összetevőjét, az úgynevezett Higgs-bozont. A CERN új nagy részecskegyorsítója, a nagy hadron ütköztető korábban sohasem vizsgált energiatartományt nyit meg a kutatók előtt. Az új kísérletek egyik fő célja ennek a régen keresett részecskének a megtalálása, megismerése. Tovább >
Indul a legnagyobb részecskegyorsító - 5. rész:
Hová tűnt az antianyag?
részecskegyorsító (2008.08.15.) A CERN új nagy részecskegyorsítójánál, nagy hadron ütköztetőnél tervezett fizikai kísérletektől a modern fizika számos nyitott kérdésére várnak választ. A legfontosabbak egyike az anyag és az antianyag problémájának feltárása. Miért csak anyag van a Világegyetem eddig általunk megismert részében, hová lett az antianyag? Egyáltalán miért létezhet az anyag? A CERN hagyományosan az antianyag-kutatás egyik központja, és az eddigi kísérletek mellett most egy újabbat indítanak. Tovább >
Indul a legnagyobb részecskegyorsító - 4. rész:
Végre megfőhet az ősleves
részecskegyorsító (2008.08.07.) Az Ősrobbanás utáni néhány milliomod másodpercben egy egészen speciális anyag tölthette ki az újszülött Univerzumot: a protonok és neutronok építőelemei, a kvarkok egy egészen rövid ideig szabad állapotban létezhettek. Ezt az ősi "kvarklevest" már régóta szeretnék kísérleti úton létrehozni, és bár voltak már komoly eredmények, a bizonyosságot itt is a világ legnagyobb részecskegyorsítójától, a nagy hadron ütköztetőtől várják. Az itt zajló ólom-ólom ütközésben az Ősrobbanás óta először koncentrálódik közel 1,2 petalelektronvolt energia, szabályozott körülmények között. Az ősi kvarkanyag létrehozása, tulajdonságainak részletes vizsgálata az anyagszerkezet legmélyebb rétegeit tárja fel, és egyúttal a Világegyetem őstörténetének kezdetéről is hírt adhat. Tovább >
Indul a legnagyobb részecskegyorsító - 3. rész:
Hidegebb lesz, mint a világűr
részecskegyorsító (2008.07.24.) Huszonhét kilométeres alagút, benne a világűrnél is hidegebb gigantikus mágnesek, 96 tonna hélium, 40 ezer szivárgásmentes csatlakozás, 11 700 amper erősségű áram. A fénysebesség 0,999999991-szeresével egymással szemben száguldó, 100 milliárd protonból álló részecskecsomagok, 600 millió ütközés másodpercenként. Többek között ilyen paraméterei vannak az alaphangon is 4 milliárd euróba kerülő, augusztusban induló nagy hadron ütköztető nevű részecskegyorsítónak, amely a legnagyobb a világon, és amelytől a világ legnagyobb kérdéseire is várunk válaszokat. Tovább >
Indul a legnagyobb részecskegyorsító - 2. rész:
Antianyag, ősanyag és más korábbi nagy felfedezések
(2008.07.19.) A CERN, a nukleáris kutatások európai tanácsának alapkövét 1955-ben rakták le a svájci-francia határnál. Az alapító okirat kimondta, hogy nem végeznek katonai célú kutatásokat, a kísérleti és elméleti kutatások eredményeit pedig közzéteszik. Az intézmény azóta a világ egyik vezető kutatóhelyévé vált. Hatalmas detektorrendszerek készültek, az irdatlan adatmennyiség kezelésére és feldolgozására kiépült számítóközpont mindig is a világ egyik legnagyobbika volt. Itteni szakemberek találták ki az internetet. Itt végezték azt a híres kísérletet, amelyben felfedezték az úgynevezett elektrogyenge kölcsönhatás közvetítő részecskéit. Itt sikerült először az antirészecskékből atomot felépíteni. Ám egy sor alapvető tudományos kérdésre a CERN eddigi legnagyobb berendezései sem tudtak választ adni. Ezek a felfedezések a remények szerint az új, még nagyobb energiájú gyorsítóra, az idén induló nagy hadronütköztetőre maradnak. Tovább >
Indul a legnagyobb részecskegyorsító - 1. rész:
Miért kellenek a gyorsítók?
részecskegyorsító (2008.07.10.) A kísérleti részecskefizika mai legnagyobb eszköze, a legnagyobb részecskegyorsító, a nagy hadron ütköztető egy 27 kilométer kerületű föld alatti alagútban működik majd, ami hosszabb a budapesti metróvonalaknál. A detektorok több tíz méteresek, a belsejükben a sok tonnányi vas éppúgy megtalálható, mint a nagyon finom szerkezetek. Minden másodpercben hatalmas adatmennyiséget gyűjtenek, az események milliárdjaiból pedig a legnagyobb teljesítményű számítógépek, számítógépek hálózatai válogatják ki a néhány nagyon érdekes új jelenséget. De egyáltalán miért van szükség ezekre a gigantikus és drága szerkezetekre? Tovább >
Nem fog összeomlani az Univerzum a világ legnagyobb részecskegyorsítójától
részecskegyorsító (2008.07.03.) Néhány hónapon belül megkezdődhetnek a kísérletek a világ legnagyobb és legújabb részecskegyorsítójában a Genf mellett lévő részecskefizikai kutatóközpontban, a CERN-ben. Az itt végzett megfigyelésekből az Univerzum kialakulásának és az anyag szerkezetének soha nem látott titkaira derülhet fény. Ám furcsa dolgok, például apró fekete lyukak vagy "időutazás" megjelenése is lehetséges, sőt olyan spekulációk is vannak, hogy már a tesztüzem alatt az egész Világegyetem eltűnik egy fura vákuumbuborékban. A tudósok véleménye alapján megnyugodhatunk: szerintük ezek a dolgok már természetes módon is megtörténhettek volna, minden másodpercben sokmilliószor az Univerzumban. Így aztán indulhat a munka. Tovább >
Csináljunk fekete lyukakat
részecskegyorsító (2006.11.19.) Akár fekete lyukak is születhetnek a világ legnagyobb energiájú részecskegyorsítójában, amelyet jövőre helyeznek üzembe a CERN-ben. A kutatók szerint nem kell félnünk tőlük: nem kezdik el magukba olvasztani környezetük anyagát, hanem azonnal elpárolognak. Tovább >


CERN - European Organization for Nuclear Research


Főoldal Oldal tetejére Főoldal